
conductivity; ~, heat-transfer coefficient; Q, internal source strength; ~ and f, temperature distributions at 
beginning of process and on boundary of domain respectively; ~, outward normal to boundary F2; 7, temperature 
gradient; q, heat flux density; ~?, fixed point on boundary F2; D ---- DIXD2; ~ - DX(0, tob] , ~i - DiX(0, tob]. 

1,  

2. 

3. 

4. 

5. 

6. 
7. 

LITERATURE C I T E D  

A. N. Tikhonov, "Inverse heat-conduction problems," Inzh.-Fiz. Zh., 29.9, No. i, 7-12 (1975). 
M. M. Lavrent'ev, V. G. Romanov, and V. G. Vasil'ev, Multidimensional Inverse Problems for Differ- 
ential Equations [in Russian], Nauka, Novosibirsk (1969). 
O. M. Alifanov, Identification of Heat-Transfer Processes of Aircraft (Introduction to the Theory of 
Inverse Heat-Transfer Problems)[in Russian], Mashinostroenie, Moscow (1979). 
A. D. Iskenderov, "Multidimensional inverse problems for linear and quasilinear parabolic equations," 
Dokl. Akad. Nauk SSSR, 225, No. 5, 1005-1008 (1975). 
A. D. Iskenderov and A. D. Akhundov, "Use of self-similar solutions to determine thermophysical 
characteristics of a medium," Izv. Akad. Nauk Azerb. SSR, No. 5, 82-85 (1976). 
V. V. Stepanov, Course in Differential Equations [in Russian], Fizmatgiz, Moscow (1959). 
A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Macmillan, New York (1963). 

FINITE INTEGRAL TRANSFORMS FOR HEAT AND MASS 

TRANSFER PROBLEMS IN NONSTATIONARY AND 

INHOMOGENEOUS MEDIA 

V. S. Novikov UDC 536.2 

Several boundary-value problems of heat and mass transfer are solved for equations with vary- 
ing coefficients. 

Integral transforms are widely used in solving transport problems, mostly described by equations with 
constant coefficients. Important contributions in developing the method of finite integral transforms were 
made by Grinberg [i], Tranter [2], the authors of [3-6], etc. 

In the present study we construct finite integral transforms for several boundary-value problems of heat 
and mass transfer, described by equations with varying coefficients. Kernels and norms of the transforms 
and characteristic equations for finding eigenvalues are determined for these problems. In this case it is im- 
portant to develop an approach to solving these equations, as suggested by the present author [7]. 

Consider the problem 

a (t) f (r) --~ = b (t) -~r rv2~ (r) -f- b (t) q: (r) ~ + g (r, t) T -t- 1t7 (r, 0, 

[ aT ] 
r~Sl  

OT + a~T ]~=R= t3~ (t), 
k (r) Or 

(2) 

where a I, a2 are constant, and ~ = 0, i, 2 are shape coefficients of the geometric region. 
notation 

R2 

r vq) (pr) T (r, t) dr = "f (p, O, 
R~ 

We introduce the 

(3) 
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where ~(pr) is a kernel of a finite integral transform to be determined. Applying the scheme of [i-7], we 

find that @(pr) and T(p, t) satisfy the equations 

d~F (pr) ] _ _  d v dT (pr) v d-d- ~ (r) [(p (r) �9 (pr)l § - -  ;~ (r) q) (r) tF (pr) + p2(I) (pr) = O, �9 (pr) -~ �9 (pr____)) 
dr dr J -~r r dr r [ (r) (4) 

a (t) dT=(P' t) ..~ _ b (t) pZff(p, t) q- Z (t) "[" (p, t) q- W (p, t) + K (p, t), 
dt 

In (5) we  denoted 

R2 ,~2 

t J 1 ' g(r ,  t).dr, W(p, t ) ~  rV~(pr) W(r' t) dr; 
Z (t) ~--- R~_ -- RI [ (r) f (r) 

R~ R, 

K (p, t) = b (t) [ rVL (r) T (pr) 

(5) 

(6) 

aT or(r' t) rVk (r) T (r, t) dvddr(pr) Jr rV(P (r) �9 (pr) T (r, t ) ]  R,' ~ (7) 

From the independence condition of K(p, t) on values of the unknown function T(r, t) with account of boundary 
conditions (2), we obtain that ~(pr) must satisfy the relations 

2~ (R2) d T  (pr) + [ a z - -  (P (R~)] ~ (pR~) -= O. 

dr r=R~ 

(s) 

(9) 

In this case K(p, t) acquires the form 

v~ K(p, t )=b( t ) [R2  (pR,,)p~(t) RPF(pRa)P~(t)]. 
E q u a t i o n  (4) r e d u c e s  to  t he  fo l lowing :  

(10) 

;~(r) d2T " v d~,~ dq f ( d~9) 
-~-d-r2 + _ ~ + _ ~. + + p 2 : _  v - - -~ r  - - ~ o  ~ = 0 .  ( i i )  

Consider first the case 

%(0-=k0r n-e, [(r)= r ~-6, ~(r)= %r ~-~-I, O<.~e, 5~i. (12) 

Here k0, ~0 are constants, and m and n are arbitrary integers. Taking into account (12), Eq. (ii) has a solu- 

tion 

! 7 ~ ~ 2 - ~ -  
1F (pr) = Ar  Z~ i-~ l/b r2 ) + Br Z-~ (--~ l/-b r2 ) �9 

(13) 

Here A and B are constants to be determined, and Zs is a cylindrical function whose analytic definition depends 

on the constants appearing in the equation: 

1 a ~ - n - - e - k v  - -  if--% s ~  - ~ [ ( 1  - -a )Z - -4c l  we, (14) 
~'o ' 

M ~ - m - - 6 - - ( n - - e )  q- 2, 
p2 (15) 

c - -  % ( n - - e + v - -  1), b ~ - - -  , 
~0 ~o 

s o m e  of  w h i c h  c a n  b e  e i t h e r  r e a l  o r  c o m p l e x .  I t  f o l l ows  f r o m  (8) t h a t  
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whe re  

I--a 

A 

!--a--2 l - -a  

- d r  r = R ~  

l--a 1 --a--2 1--a 

d r  ~ R ~  

M 
2 P~ 

~'~ M lz ~ r ,. In what  fo l lows  we use  as  t r a n s f o r m  k e r n e l  the  e x p r e s s i o n  

(17) 

in which B/A is determined by relationship (16). The eigenvalues Pk are the positive roots of the transcenden- 
tal equation 

1--a i--a--2 1--a 

F(R1)=- -  [a_~--{~(R~)]R~ ~ Z.(Y)I,=n: + ~ ( R 2 )  ~ - R 2  Z~(9,)I,=R -r-R~ 2 dZ~(g)dr 
(18) 

{ ~ [ adz f]} T Z 1 - -  a i -~-2 
x [ ~ - - m  (R~)] R~ -~(Y)I,=~ + X(R~) --~---R~. 2 Z_~(y)I~_R+R ~ 2 -~(U) - ' ,  

�9 - ' dr r=R2 

obtained from condition (9). 

The norm N2(Pk) of the transform is 

Here function F(RI) is determined by expression (16). 

1 rv od  __jR, + 1 .  o 
N2 (Ph) -~- n,'f cb2 (pkr) dr = - -  --p~ dr - -  rV(~(PW - -  dr dr r ~ T  -~r dr. 

R, 

The exact expression for the integral in (19) is quite awkward. 
ir~ ately 

N ~ ( p h ) , ~  p~ o ~ +  '? . , ~ - -  . 
l P  2~ ~2 

• R~ (1) (PkR~.) ~F (PhR2) - -  [a~ + Lo RY - ~  
7 (R.~ - -  R, )  2 

(!9) 

Using the mean value theo ren~, we have approx- 

R~ -~ Q(p~, R,, R~)l 
R2 - -  R1 ~2" (flhR2) J 

RT v ~(Pk, RI, R2)] (p~R1)} 

(20) 

7 ~ v § 2 4 7  1, -q(Pk, RI, R.~)= 

e~ 

I ' rV T (r). (D (pkr) dr. 
. f (r) 
R, 

The s o l u t i o n  of  Eq.  (5) is 

T (p~, t) [T(ph, 0 ) +  
/ t" t 

.t' ~ (,4. ~')ex~ ( j'~ ~ ,  0 ~" )~' i ox~ ( - - ( ~  ~ ,  ~') ~"),  
0 0 0 

(21) 

(22) 

1 
E (p~, l) = ~ [iV (p~, 0 + K (p~, l) ], 

R2 

T (ph, O) = ( r ~ To (r) a) (p~r) dr, 
k~ 

n (Pk, t) = b (t) .... pne __ ~ _ Z  (t) 
a (0 ~ ( t ) '  

(23) 

(24) 
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t he re fo re  the required function is 

T (r, l) = 2 ~ (Ph, t) q) (p~r) N -2 (ph). (25) 

The summat ion  here  is pe r fo rmed  over  the eigenvalue Pk subscr ip t ,  being t h e p o s i t i v e i n c r e a s i n g  roots  of Eq. 
(18). 

Consider  the more  general  equation 

a (Of(r) ~at =b (t) hr v(r) orO [ r,)~ (O aT_~r ] -4- b (l) r (r) aTo_._7_ + g  (r, t) T-I- W (r, t). 
(26) 

As previously, t h e  transformant of the required function is determined by relationship (3). Applying the ap- 
proach discussed above, we find that the function ~(pr) -=-~(pr)/f(r) satisfies the equation 

)~h d2~ dh h dL ._}_ ~ ~.h --  ~ - -  
ar z + 2~-~r + -~r r dr (27) 

( deh v dh dq) v ) -Jc d~, dh jr_ ~ .-~ .... L q~_}_ p2[ ~ = 0. 
dr dr ~ r dr dr r 

Consider  the case  when the functions X(r), f(r) a re  de te rmined  by re la t ionship  (12), and h(r) ,  ~(r) a re  h(r) = 
h0rk-p ,  ~(r) = (Do r / -~,  where  k, l a re  a r b i t r a r y  in tegers ,  and 0 _< p,  ~ _< 1. Requiring that  the equali ty l - 

- (n - e) - ( k -  p) = - 1  be sa t i s f ied ,  Eq. (27) has a solution de te rmined  by re la t ionship  (13). The coefficients 
a,  s ,  M, c,  b, however ,  which were  e a r l i e r  de te rmined  by express ions  (14) and (15), acquire  for Eq. (26) the 
form 

a = 2 ( k - - p ) + n - - e + v - -  % , 
~oho (28) 

1 [(1_a2)_4c]1/2, b = P~,- 
s = ~ Zoho 

M = m - - 5 - - ( n - - e ) + 2 - - ( k - - ~ t ) ,  c=(k- - t t ) (n- -e_l_k_F.;_ l_]_ ,  v ) _  % ( l - -~q-v) .  
~oho 

If the following boundary conditions a re  given for  (26) 

(29) 

~,(r) h(r) aT " ] + ~lr r=~i= ~1 (t), 
(30) 

[ aT l (r) h (r) , 

the ra t io  B/A and the cha rac t e r i s t i c  equation for  finding eigenvalues for  the kernel  of the t r a n s f o r m  of equation 
(26) a re  de te rmined ,  with account of (28) and (29), by express ions  (16) and (18), rep lac ing  in them X(r) by X(r). 
h(r).  The norm of this t r a n s f o r m  is 

R2 

- - - - [p~  dr JR,R, P~I i [ d(Pddr dr v . d(D ] . . j  (31) 1 rye.q) d ( h ~ ) - -  r V ~  - -  rVL ~ - -  (h~)  N 2  (p , , )  = + - r at. 

Rt 

Since 
(32) 

where  i = 1, 2, then approx imate ly  

._~1 { [a~ + R~ -~ XO h(R~ ) 
N~ (Ph) ~ p~ (R~ - -  R y  

RT v Q (Ph, R,, R2) ] R~2tD (phR~) T (phR:) - -  
R~ - -  RI W (phR~) 
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--[a~@ R~-v )~o h(RO RT v O(Ph, Ra, R2)] } 
(R2 - -  R,) 2 7 R.o - -  RI # (fl~-R1) J R ~  (phR~) T(p~R~) . (33) 

By (26) the t rans formant  T(r,  t) has the form (22), where the functions E(Pk, t), T (Pk, O), n(Pk, t) and K(Pk, t) 
are determined by expressions (23), (24), and (10). In this case the t r ans fo rm kernel is chosen to be (17), 
where a,  s, b, M, and c are  determined by relations (28) and (29), and the function Mr) is replaced by Mr)h(r). 
The solution of Eq. (26) is of the form (25), in which case the norm of the t r ans fo rm is chosen by express ion 
(33). 

The transfer equations under consideration have a very wide range of application. They underlie mathe- 
matical models of turbulent transfer in the atmosphere and of many thermotechnological processes. Equations 
for geopotential tendency, used for weather prediction, as well as many problems of convective thermal con- 
ductivity (diffusion) reduce to them. 

The method suggested for solving these equations is easily realized for the region 0 _< r -~ R and for 
other combinations of boundary conditions. 

A method was suggested in [7] of solving the equation of convective diffusion with a source in the form of 
an arbitrary function of coordinates. The method is generalized below to the case of the more general problem 

o c  oc  + [ +Jc I (34) 

Cl,~=0=0, 8~C[ = 0 ,  C(O, y)=Co(y) .  (35) 
og l 

Equation (34) descr ibes  convective diffusion in a flow in a planar  channel of width H under conditions of total 
absorption of the diffusing component at the channel walls. The coordinate dependence of the diffusion coeffi-  
cient D = DoT(X, y), D O = const  must be accounted for,  e. g . ,  when the tempera ture  and p re s su re  in the flow 
depend s t rongly on coordinates .  

We choose a s t r eam function ~,  such that u = 3~/8y ,  v = -O~P/Ox, and t r ans fo rm from the coordinate 
sys tem (x, y) to the sys tem (x, ~), in which 

and Eq. (34) is 

aC aC { OC ac oc 
- -  ~ I - - V  ~ - - l . t - - ~  ax u -~x ~ O~F Oy O~ 

a c  = Do v (~, ~)  u + f (x, ~)  C + ! F (x, ~) .  
ax u 

1 ! 

ra (~) x-4 Let u = ~ - ~  (the case re(T)= iF2, n(x) =- was considered in [7]), and y(x,  ~) = Q(q~)N(x). We apply 

(36) 

(37) 

the scheme of finite integral transforms; we find that the kernel of the transform #(p~) and the transformant 
of the required function satisfy the equations 

d [ (~,) d~f] (3s) 
d ~  m (iF) Q = _ p2r 

1 n2(x)Z(x)~ 1 n2(x)W/(x, ph)_l f (pa ,  x), (39) n (x) dCdx - [~Dop~N (x) C-q- ~- -4- --~ 

OC I 
K (p~, x) = n (x) q (x) r (p~)[~=0,  q (x) = D (x) ~ , 

y = 0  J 

D (x) DoN (x) Q (W.), Do = D ~ .  '~+~ W. = const <~ ~Fo, 

trff o 

= .I C (x, W) cI) (proW) dlF, 
0 

1 i: ~ f(x, 'F) 
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tF o 

_ j' F (x, ~ )  
W(X, Pk) = re(T) Od~. (40) 

0 

Since in var iables  (x, V) conditions (35) are  of the fo rm Cl~=0 = 0, 0C/0~l~=xi, ~ 0, ,I% = ,I~]y=H/2 , the 

eigenvalues are  found f rom the equation d Ce(p~)/d~ t ~ -  ~0 = 0. 

We fur ther  consider  the case m(,I,) = ~ k - p ,  0 _< ,I, _< ,I,0; Q(g,) = ,I,m-5 , % _< ,I, -< g~0, where k and m are  
a rb i t r a ry  integers , and O_<p, 5 < 1 .  W e d e n o t e k + m - p - 5  = - n - e .  The solution of Eq. (38) i s t h e n  

1 - - a  M 

1 - - n + e  
a = n - - e ,  v , M - - - 2 - - n + e ,  1 < a < 2 .  

2 - - n + e  

The norm of the t r ans fo rm is 

(41) 

(42) 

W o M 

= - -  Zv (71~) - -  Zv+~ (7h) Z~_~ (Th) , ~'h = P ~ 0  2. 
0 4 M- 

Here  and above Zv(7) is a cyl indrical  function of o rd e r  v. (An e r r o r  was committed in [7] in calculating the 
norm. The c o r r e c t  value of the factor  in front of the square bracket  in the denominator  of express ion  (8) is 

3 2~-2 ) % n �9 Since, 
8 

C-(x, pk)={C(0,  p~)+ S i d l e ( X ,  pk )n (x ) - -K(ph ,  x)] "exp[P(x, p ~ ) ] d x } e x p [ - - P ( x ,  p~)], (44) 
0 

the required function is 

= D  2 P (x, p~) f~ oph i N (x) ax - -  1 ; Z (x) n (x) dx, 
�9 n(x) 
0 0 

(x, ~F) = 2 q) (PhXF) C-(x, Pk) N'2 (ph), 
h ~ l  

where the summation is performed over the increasing roots of the equation 

l+a l --a+M--1 
I - -  a~. ~ 2 Z~ (7h)+ - ~  ~o  2 2 Ph [Z~_l (7~) - -  Z,+l  (Th)l = 0. 

1 

The t rans i t ion to the (x, y) space is real ized by replacing ,I, by the equivalent express ion  [ n--~x) y ] ~-~+~ 

(45) 

(46) 

(47) 

It should be noted that the method suggested for solving Eq. (37) is also applicable for solving the equa- 
tions of convective diffusion to spherical bodies in liquid or gas flow, such as drops, bubbles, and capillary- 
porous bodies of spherical shape. These equations have the form of relationship (37). 

According to the general theory of eigenfunction expansion of the Sturm- Liouville problem [3], the co- 
efficients of Eqs. (i), (26), (34), as well as the functions fit(t) and fi2(t) do not have singularities, i .e . ,  infi- 
nite discontinuities. Uniform convergence of the series (25) and (46), as well as the reality of the corres- 
ponding eigenvalues [3], follow from expansion theorems of this theory. The positiveness of these numbers 
follows from properties of Bessel functions and from the shape of the corresponding equations for finding 
them. 
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STEADY-STATE TEMPERATURE DISTRIBUTION IN AN 

INHOMOGENEOUS MEDIUM WITH LOCAL INCLUSIONS 

Yu. I. Malov and L. K. Martinson UDC 536.24 

We present  a modification of the method of image regions [G. I. Marchuk, Methods of Numeri -  
cal Mathematics ,  Spr inger -Ver lag  [1975)] to solve the boundary-value problem for the s teady-  
state t empera tu re  distr ibution in an i r r egu la r  multiply connected region. 

We consider  the boundary-value problem for the tempera ture  distr ibution u(x) in the multiply connected 

N 
region G =- II \ U ~4 (Fig. 1), where 1I = {(xl, X2): 0 ~ X 1 --% L, 0 -< x 2 --< Z}, and COs is a region which c o r r e s -  

ponds to a local inclusion. At the boundary of the inciusion, the heat flux is zero: 

div [H(x) grad u (x)] = - -  [(x),  x = (xl ,  x2) CG, (1) 

Ou "% 
" l r = 0 , - - 0 n  = 0 ( s = 1 , 2  . . . . .  N). 

Here H(x) > 0 is the heat-conduction coefficient of the inhomogeneous medium; f(x) > 0, volume densi ty of the 
heat sources ;  F, boundary of the rectangular  region [I; Ys, boundary of the local inclusion COs; and n, normal  
to the contour "/s. 

We shall present  a method which makes it possible to find a r igorous solution of problem (1) for any 
shape and number of local inclusions co s. Together  with (1) we shall formulate an auxil iary problem in the 
rec tangular  region II: 

[ ovo ] ~;, 0 ~(x;  ~) = - -  

~'~ Oxm Oxm ] 
i l l  ~ 1 

V~! r = O, 

F(x), xEH, 

where ~(x; e) and F(x) are pieeewise-smooth functions which are defined as follows: 

~(x; ~)=I u(X)' xEG, F(x)= ff(x), xEG 
(~ - const>/0, x E F I \ G ,  [0, xEIING. 

(2) 

(3) 

N. ]~. Bauman Higher Technical School, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, 
Vol. 41, No. i, pp. 158-163, July, 1981. Original article submitted May 12, 1980. 

0022-0841/81/4101-07895 07.50 �9 1982 Plenum Publishing Corporat ion 789 


